Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae

نویسندگان

  • Hongting Tang
  • Meihui Song
  • Yao He
  • Jiajing Wang
  • Shenghuan Wang
  • Yu Shen
  • Jin Hou
  • Xiaoming Bao
چکیده

BACKGROUND Cellulase expression via extracellular secretion or surface display in Saccharomyces cerevisiae is one of the most frequently used strategies for a consolidated bioprocess (CBP) of cellulosic ethanol production. However, the inefficiency of the yeast secretory pathway often results in low production of heterologous proteins, which largely limits cellulase secretion or display. RESULTS In this study, the components of the vesicle trafficking from the endoplasmic reticulum (ER) to the Golgi and from the Golgi to the plasma membrane, involved in vesicle budding, tethering and fusion, were over-expressed in Clostridium thermocellum endoglucanase (CelA)- and Sacchromycopsis fibuligera β-glucosidase (BGL1)-secreting or -displaying strains. Engineering the targeted components in the ER to Golgi vesicle trafficking, including Sec12p, Sec13p, Erv25p and Bos1p, enhanced the extracellular activity of CelA. However, only Sec13p over-expression increased BGL1 secretion. By contrast, over-expression of the components in the Golgi to plasma membrane vesicle trafficking, including Sso1p, Snc2p, Sec1p, Exo70p, Ypt32p and Sec4p, showed better performance in increasing BGL1 secretion compared to CelA secretion, and the over-expression of these components all increased BGL1 extracellular activity. These results revealed that various cellulases showed different limitations in protein transport, and engineering vesicle trafficking has protein-specific effects. Importantly, we found that engineering the above vesicle trafficking components, particularly from the ER to the Golgi, also improved the display efficiency of CelA and BGL1 when a-agglutinin was used as surface display system. Further analyses illustrated that the display efficiency of a-agglutinin was increased by engineering vesicle trafficking, and the trend was consistent with displayed CelA and BGL1. These results indicated that fusion with a-agglutinin may affect the proteins' properties and alter the rate-limiting step in the vesicle trafficking. CONCLUSIONS We have demonstrated, for the first time, engineering vesicle trafficking from the ER to the Golgi and from the Golgi to the plasma membrane can enhance the protein display efficiency. We also found that different heterologous proteins had specific limitations in vesicle trafficking pathway and that engineering the vesicle trafficking resulted in a protein-specific effect. These results provide a new strategy to improve the extracellular secretion and surface display of cellulases in S. cerevisiae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion

BACKGROUND As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secret...

متن کامل

N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae

Saccharomyces cerevisiae is a robust host for heterologous protein expression. The efficient expression of cellulases in S. cerevisiae is important for the consolidated bioprocess that directly converts lignocellulose into valuable products. However, heterologous proteins are often N-hyperglycosylated in S. cerevisiae, which may affect protein activity. In this study, the expression of three he...

متن کامل

Characterization of Phosphate Membrane Transport in Saccharomyces cerevisiae CEN.PK113-5D under Low-Phosphate Conditions Using Aerobic Continuous Culture

Two different growth media, namely complex and defined media, were used to examine establishment of steady-state conditions in phosphate-limited culture system of Saccharomyces cerevisiae CEN.PK113-5D strain. Using the defined growth medium, it was possible to obtain steady state condition in the continuous culture. The effect of phosphate concentration on the growth of S. cerevisiae in pho...

متن کامل

Production of vitamin D3 enriched biomass of Saccharomyces cerevisiae as a potential food supplement: evaluation and optimization of culture conditions using Plackett–Burman and response surface methodological approaches

Vitamin D deficiency causes osteoporosis, osteopenia, fractures, rickets and more recently is linked with some chronic illnesses such as cancer. Because of the safety and probiotic properties of the yeast Saccharomyces cerevisiae, we hypothesized that yeast cells enriched with cholecalciferol (vitamin D3) could represent a solution for prevention or treatment of vitamin D deficiency. In this st...

متن کامل

Green synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae

Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017